Classifier Calibration for Multi-Domain Sentiment Classification

نویسندگان

  • Stephan Raaijmakers
  • Wessel Kraaij
چکیده

Textual sentiment classifiers classify texts into a fixed number of affective classes, such as positive, negative or neutral sentiment, or subjective versus objective information. It has been observed that sentiment classifiers suffer from a lack of generalization capability: a classifier trained on a certain domain generally performs worse on data from another domain. This phenomenon has been attributed to domain-specific affective vocabulary. In this paper, we propose a voting-based thresholding approach, which calibrates a number of existing single-domain classifiers with respect to sentiment data from a new domain. The approach presupposes only a small amount of annotated data from the new domain. We evaluate three criteria for estimating thresholds, and discuss the ramifications of these criteria for the trade-off between classifier performance and manual annotation effort.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-domain Sentiment Classification

This paper addresses a new task in sentiment classification, called multi-domain sentiment classification, that aims to improve performance through fusing training data from multiple domains. To achieve this, we propose two approaches of fusion, feature-level and classifier-level, to use training data from multiple domains simultaneously. Experimental studies show that multi-domain sentiment cl...

متن کامل

Self-training from labeled features for sentiment analysis

Sentiment analysis concerns about automatically identifying sentiment or opinion expressed in a given piece of text. Most prior work either use prior lexical knowledge defined as sentiment polarity of words or view the task as a text classification problem and rely on labeled corpora to train a sentiment classifier. While lexicon-based approaches do not adapt well to different domains, corpus-b...

متن کامل

Sentiment Classification for Domain Adaptation Using Cross Domains

Sentiment analysis aims to determine the attitude and the feelings of the opinion holder for the given reviews. Reviews contain features and opinion. Automatic extraction of customer opinion which is used by both manufacturers and customers. The Sentiment Classifier might classify reviews as positive or negative based on the sentiment expressed in review. Sentiment classification is domain depe...

متن کامل

Leveraging Multiple Domains for Sentiment Classification

Sentiment classification becomes more and more important with the rapid growth of usergenerated content. However, sentiment classification task usually comes with two challenges: first, sentiment classification is highly domain-dependent and training sentiment classifier for every domain is inefficient and often impractical; second, since the quantity of labeled data is important for assessing ...

متن کامل

TJUdeM: A Combination Classifier for Aspect Category Detection and Sentiment Polarity Classification

This paper describes the system we submitted to In-domain ABSA subtask of SemEval 2015 shared task on aspect-based sentiment analysis that includes aspect category detection and sentiment polarity classification. For the aspect category detection, we combined an SVM classifier with implicit aspect indicators. For the sentiment polarity classification, we combined an SVM classifier with a lexico...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010